The noninvasive system, known as Ortho-Tag, features a wireless chip attached to the implant and a handheld receiver that together would let physicians view the critical information about artificial knees, hips, and other internal prosthetics—as well as the condition of the surrounding tissue—that currently can be difficult to track down.
The chip, or tag, would have information about the patient, the implant, and the procedure uploaded to it prior to an operation, explained New Jersey-based orthopaedic surgeon Lee Berger, CEO of Ortho-Tag, Inc., and inventor of the tagged implant. In addition, sensors within the chip would gauge the pressure on the implant, the chemical balance and temperature of the tissue, and the presence of harmful organisms. Ortho-Tag would be affixed to an orthopaedic implant and scanned via radio-frequency with a probe and RFID tag developed at Pitt. A card (foreground) would be available to patients with an existing implant.
All of this information would subsequently be read by a handheld probe developed in the laboratory of Marlin Mickle, the Nickolas A. DeCecco professor of electrical and computer engineering in Pitt’s Swanson School of Engineering. When placed against the patient’s skin, the probe communicates with a radio-frequency identification (RFID) tag devised in the Mickle lab by Pitt graduate researcher Xiaoyu Liu that emits a unique wavelength designed to travel through human tissue. Special software would display information from the tag on a computer.